
AD-A090 771 DELAWARE U14IV NEWAHK APPL ED MATH-EMATICS INST F/G 12/1

ALGORITHMIC SCLUTION OF S.11E AULUES WITH OVERFLOW 'U'

APR 80 M F NFUTS, b KUAUR AFOSR-77-3236

ULSSIFUE TR-S1B AFOSA TR Al _0993 14LEhhhmhhhhhh
I lllllffillf



AFOR-T. 8 0.. 993 St V V~~: 'EVEL

0

DTiO
mett

' OCT 2 4 ....

APPLIED
MATHEMATICS INSTITUTE

University of Delaware
Newark, Delaware

XpprvcVd f or p'aIb3~rl eao

41 distributliz a ,

.j.8 10 6, 105t %o z) zt' "



:LEVEV,

ALGORITHMIC SOLUTION OF SOME QUEUES

WITH OVERFLOWS

by

Marcel F. Neuts

and

Seshavadhani Kumar

Department of Mathematical Sciences
University of Delaware
Newark, Delaware 19711

Applied Mathematics Institute
Technical Report # 51B

April 1980

This research was supported by the Air Force Office of Scientific
Research, Air Force System Command, USAF, under Grant No. AFOSR-77-3236
and by the National Science Foundation, under Grant No. ENG-7908351.

AIR FORCE OFFICE OF SCIENTIFIC R1SEARCU (AlSC)
NOTICE OF TRANSMITTAL TO DDC
This technical report has been reviewed jad ii
approved for p'blic release IAN A l 190.1g (b).
Distribution is u-limited.
A. D. BLOSS
Tohnilm ltornation Ottleop



.1 EPORT DOCUMENTATrION PAGE BFRE COSMPLTINORM

j A SR -8 J 09 9 3 ~1AD 0 o,77.( )

'~, LGOITELC§OLUTION OF SOME QIJaJES WITH OVERFLOWJS

I. POCASINGICATIROMOW NUMRAN

Mace. F DITIUIN SAENTs (fti ot

Approed forhpuics relstue 6itr1to uniitd

11. SUNTRLENTAR OESNM N DRESR~o

Air FreY WORDfonice o reeScientii eeearchidntiyb lcMubr

Bovloing queueWsig, DrxgeC ti soluion phase R typ PisriGEto;,--

systems~~~2 of quus copttinlpobblt

strctued fork pulcrces itstbinleiasedhsMrkvpoes.a

Oefoiqeematrix-geometric inaratoeco.uatioula featues ofye infinsima

geneRACTo (ofte roresdfncessary eusd topify the blocica cnuptatinro
Thvars staystate feres tn/h/qe oel Sevierapariats and asheicpa

exaucple ar o pcss. I h tbecstisMro rcs a

DD I'rN7 1473 EDITION OF I NOV GS IS OBSOLETE UNCLASSIFIED 'TVJ 46
SECURITY CLASSIFICATION OF THIS PAGE (W~ Dots Entered)



Abstract

The overflow stream from an M/PH/i queue of finite capacity is used

as the input to an unbounded queue with one or more exponential servers.

It is shown that the combined system, consisting of the two queues, may be

studied as a highly structured Markov process. In the stable case, this

Markov process has a matrix-geometric invariant vector. Particular

features of the infinitesimal generator of the process may be used to sim-

plify the numerical computation of various steady-state features of the

model. Several variants and numerical examples are discussed.
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1. The Model

We study a service system with two units, each with a single server.

Unit 1 is of finite capacity K. Unit 2 has as its input the stream of

overflow customers from Unit 1, i.e. any customer who upon arrival to the

system finds K customers (waiting or in service) in Unit 1 proceeds for

service to Unit 2. The queue in Unit 2 is unbounded. Tractable variants

of this model, involving multi-server units with exponential servers, are

discussed in Sections 4 and 5.

The arrivals to the system are according to a Poisson process of rate X.

The successive service times in Unit 1 are independent and have a common

distribution of phase type [6,11], given by the irreducible representation

(8,S) of order m. Service times are assumed to be positive random varia-

bles, so that 'M+l - 0. Customers, who upon arrival find K customers in

Unit 1, go to Unit 2. Service times in that unit are independent exponential

random variables with parameter u. The interarrival times and the successive

service times in both units form independent sequences of random variables.

For the present, we assume that there are no independent arrivals directly

to Unit 2.

This queueing system may be viewed as an M/M/l queue in a Markovian

environment (8,9,111. In order to see this, we first consider Unit 1 alone.

It may be studied as a continuous-parameter Markov chain on the state space

E1 M {0}u{(ij): 1 < i < K, 1 < j .<m}. The index i denotes the number

of customers in Unit 1 and the index j gives the phase of the current ser-

vice. The state 0 corresponds to the case where Unit 1 is empty.

The infinitesimal generator Q of this Markov process is given by
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so s-XI XI

S°B* S-AI Ul

(1) Q - S°S S-XI Xl

o SB °  S-AlI X

SOBo S

where the matrix SOB ° is defined by Sj'B. The states (ij), 1 < i < K,

1 < j < m, are ordered in the lexicographic manner.

?The process Q now clearly acts as an environmental process, which

modulates the arrival rate to the second unit. Whenever the process Q

is in one of its states (K,J), 1 <_ j m, there are arrivals to Unit 2

according to a Poisson process of rate A. At all other times the arrival

process to that unit is interrupted.

For future use, we note the following explicit formulas for the unique

stationary probability vector 7_ of Q, which satisfies the equations

_V Q - 0, _v e - 1.

Leama 1

After partitioning into the form [w0,1l,2 2 ,.K], the vector w is

given by

K-1l aK1sl-1 -1i~~~ ~ C0 " -  + X C K-(s-)e

(2) M " 0 AC i  for 1<i< K-1,

K-l1 -1V X WO §C (-S )
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where

(3) C - A(AI-ABo-s)-1

The matrix BOO is defined by B O - e • .

Proof

The vector w is the stationary probability vector for the (Km+l)-

state Markov process which describes the bounded M/PH/i queue. The simple

proof of the lemma, which is given in [11], is repeated here for completeness.

The steady-state equations Vt Q -.a, may be written as

-X 70 + o0

0 _ + i1 (s-rI) + -2 SOB* ,

X i-1 +. i (S-AI) + 4
+
1 SB O ,for 2 < i < K-1

Postmultiplying all equations in (4), but the first, by e, we obtain

X e - + S, for 1 < i < K-i, or equivalently X z BOO

jj+i S*B. Replacing the rightmost term in the equations for i - 1,

K-I by X -i BOO, we obtain

X no 0 - 1 (XI-,B°°-S)

X W - =  (XI-XB"-S) , for 2 < i < K-i

This readily leads to the formulas (2). The non-singularity of the matrix

C may easily be proved by contradiction.

iti7 ,
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The entire system may now be studied as a Harkov process on the state

space E = {k > 01 E1, with generator Q* given by

Q-) A XA

iI i-Q-lUI aI

pI Q-XA-uI
() Q* 1 Q)-I ..

where A denotes a diagonal matrix of order K1n+, whose last m diagonal

elements are equal to one. All its other elements are zero. In Formula (5),

I denotes an identity matrix of order Km+-1.

The matrix Q* is a particular case of the generators, discussed in

*[11]. The following theorem is therefore immediate.

Theorem 1

The queueing system is stable if and only if

(6) X IK e < V

The stationary probability vector x of Q*, partitioned into vectors

Ak' k > 0, of dimension Kn+l, is given by

(7) fn -(I-R) R k  for k>0.

The matrix R is the minimal nonnegative solution to the equation

(8) R 2 + R (Q-XA- ) + )A 0

and has spectral radius less than one.
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As was pointed out in (11], the fact that all but the last m rows

of A vanish implies that the same is true of the matrix R. Although the

matrix R is of order Kin+l, only its last m rows are positive. This

special structural property may be exploited to compute R efficiently.

2. Algorithmic Procedure

Taking the simplified structure of the matrices R and Q into ac-

count, we may rewrite Equation (8) as follows. We partition the last m

rows of R into [, R1, R2 ... , .K], where R is a column vector 'of

dimension m and Ri, 1 < i < K, are square matrices of order m. It then

follows from (1) and (8) that

R 1K - (+u) RO + R S- 0

U RKl + %I + R, [S-(X+u)z] + R2 SB - 0
(9)

0 R + XR + R [S-(X+u)I] + Ri+ SB 0
K i-l li SB 0 -

for 2 < i < K-1

R 2K R K + R, [S-(X+UilI + XI - 0

Setting M - [(X+u)I-S] , the equations (9) may be written in the

convenient form

Bo" ( d.) -l .%oR~.

R" V R R, + (XR2 ' )B] M

(10) Ri ( ui RKRi+A _- ]  + Ri+l - M"- ,

for 2 <i< K-1,

2R K -[Ij RK+A1K1,+XI] M

|illl~lllJm
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It may be verified by an elementary induction argument that the Gauss-

Seidel type iterates, defined for n > 0, by

Ro(n+l) - (1+)- 1i RK (n+l) .o(n) + R1 (n+1)SO,

R (n+l) - {v RK(n+l) Rl(n) + [A R0(n) + R2 (n+l)S°] IM

R i(n+l) - [i R(n+l) Ri(n) + X Ri_ (n)] M + R +I(n+l)S 0 _ M

for 2 < i < K-1

2R,(n+l) - [1 Ri(n) + X R_l(n) + AI] M

with R,(0) X M, Ri(0) - 0, 1 < i < K-i , (0) - 0 , converges increasingly

to the desired matrix R. This method of computation has clear advantages over

successive substitutions.

As was proved in [81, the matrix R satisfies the relation

(11) e + Z e - X e,

which provides a useful accuracy check on the computation of R. The matrix

R is formed by the last m rows of R.

From Equation (7), by using the structure of R, we obtain

(12) E = Z - ZK R ,
-K _(IRK) - R for k>l.

By virtue of (11), the marginal density of the queue length in Unit 2 is

given by

(13) - I kiYkml " ' I R )R - -e ' for ki .
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It is of particular interest to study the conditional densities of the

queue length in Unit 2, given the number of customers present in Unit 1.

(0) (1) (K)To this end, we partition the vector 4 as [kO, I,...,K ], where

the (r), 1 < r < K, are a-vectors. The conditional queue length density,

given that there are j customers in Unit 1 is then given by

(k) -1(Q)q (7r e)for 1 <J <j K ,
(14)

(k) -1 (0)

for k > 0

From the formulas (12), (13) and (14), expressions for the first and

second moments of the corresponding queue lengths may be routinely calculated.

3. The Waiting Time Distribution

We now consider the stationary distribution of the waiting time of an

arriving customer, under the first-come, first-served queue discipline. There

are two cases. Either the customer is admitted into Unit 1 and is served

immediately or he waits for a time not exceeding x units of time; or the

customer finds the first unit full and goes to the second unit. If it is

free, he is immediately taken into service. If not, he may have to wait

there for not more than x units of time. We denote the conditional waiting

time distributions, corresponding to these two alternatives by W1 (.) and

W2 (-) respectively.

Wl(X) may be viewed as the distribution of the time till absorption in

the Markov Process with infinitesimal generator
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1 So S

2 0 S*B°  S

Q1 3 0 S°B S

4 0 S°B °

S 0

K-1 S BO S

with the initial probability vector,

( 1 ) -0 ( - 4 S_ ) -  ( 0 ' - ' M- 2 " " - ) "

In order to compute this distribution, we consider the system of dif-

ferential equations,

- i 1 (x S

(16) W(x W ~ S + Yi ~ (x , for 1 < i < K-2

y l(x) - zl (X) S

with initial conditions, given by (15)

Clearly [(x)]j is the probability, that the customer is in the

state (i,j), 1 < j < m, of the Markov process Q1 at time x. From this

it follows that W1 (x) - y0 (x), for x > 0

The conditional distribution W2(-) is obtained as follows. Since the

service time in Unit 2 is exponential with parameter i, the Laplace-Stieltjes

transform w() is given by,
2v by,
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-O r (K)
W2 (s) ( !.)- r +s) -(T ) _

r 0 r -

(17) - r ¢ _ r[

Upon inversion, we obtain

(18) w2 (x) - 1 - (ze) -1 K exp([x(,-I)]e, for x > 0

To compute W2 ('), it suffices to solve the system of differential

equations

v' (x) - U v(x) (YI) ,

with initial conditions v(0) - (e) ic , and to form W2 (x)

1 - v(x)e , for x > 0

Finally, the unconditional waiting time distribution is obtained as,

W(x) -(1-e)Wl(X) + KE , for x > 0.

The mean waiting time of an arriving customer is computed by considering

the two units separately. The Laplace-StieltJes transform of Wl(X) is

given by,

K-1
W(s) -0 + E V. [(sI-S) - S°Bo°r

K-1
o + E WT (sI-s) - S - fr-I(s)

r-1

where f(s) § (sI-S)- 1S* The mean of W1 (.) is hence given by

K-1 K-1
W*(0) - S-1e + vj E (r-l) w e,

r r-2 -

I
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where u is the mean service time in Unit 1. Similarly, upon differentiating

W2(s) we get

The mean waiting time W is then given by

w - (1l-190 (-W* + 40 (.-w2 (0))

4. Several Servers in Unit 2

Here we allow the second unit to have c exponential servers of service

rate P. The queueing system is now studied as a Markov process on the state

space E {k> 01 XE, with infinitesimal generator

A 0 A0

A1 0  All A2

Ac-2,0 Ac-2,1 A c-2 ,2

Q2A A A0
-2 "c-, 0 Ac-l,l A0

A2  A1  A

A A,2 1

The square blocks of dimension Xm+l are given by,

. .........
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A00 - Q AA

A01 1 A2 Ac-1,2 AO

Aio W iU , for 1 <i c-1

A il Q-XA-iI , for 1 i< c-i,

A - Q-?XA-cUiI

A - c I ,

where the matrices Q and A are as given in Section 1.

Then, corresponding to Theorem 1, we have

Theorem 2. The queueing system is stable if and only if

XI!_ e < c U

The stationary probability vector x is partitioned as

(' 2l' 22' "" " x , ... ) , where each of the component vectors is of

dimension KM+l. The vectors , for k > c , are given by ,

(19) X R k-c+l

The matrix R is the unique solution in the set of nonnegative matrices

of spectral radius less than one, of the matrix-quadratic equation,

(20) c U R2 + R (Q-XA-cljI) + XA 0.

The last m rows of R are positive; all others are zero.

The vector (x x " _' - )  is the left eigenvector, corresponding

to the eigenvalue zero, of the irreducible semi-stable matrix

i
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A0  A 0 ...00 01
A A A10 11 12

A A20 21

(21) T = A Ac-2,1 Ac-2,2

c20 A~ 2  A-,
AC-1, 0 AC-1, I+A2 I

and is normalized by

c- 2_
-2 e + x--i (I-R) e i

1-0

Proof. The statements about the steady-state vector x were proved in [9].

That the matrix R has the particular structure is clear from the discussion

in Section 1.

The matrix R is computed using the algorithmic procedure described in

Section 2, as are the steady-state vector and the other quantities of interest.

The WatLnL Time Distribution

In the computation of the waiting time distribution of an arriving cus-

tomer, only the distribution W2 (.) requires some discussion. Its Laplace-

StieltJes transform W2(s) is given by

c-1 4 i-c+3.w 2 () . )-1 (K)_ + i - K)W2()-10 ! C +s-
Sin K) (K) l  for i > c, we obtain

W(u)" (-iO (K) (K)-2-1 R K • c)_

Upon Inversion and simplification, one obtains

I ~ --------- --.---*---- -~ :
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-1 x(K) (I-R)-1 R exp [-cux(I-R:)]e

W2"X -1 K K)

for x > 0

We see that the distribution W2 (.) may again be computed by the solution

of a simple system of differential equations, similar to that obtained in

Section 3.

5. Overflows from a Multi-server Unit 1 to a Unit 2 with Several Servers

In this section, we consider the system with Unit 1 having r exponential

servers with parameter ui' and the second unit with c exponential servers,

with parameter V2. A particular case of this model, in which both units

have single exponential servers with the same rate and in which the waiting

room in unit 2 is also of finite capacity, has been studied in [2].

We describe the unit 1 of the present model by a Markov process on the

state space E- (0, 1, 2, ... , K), with infinitesimal generator

Ii 0-1 Ai-X

2 2Ul -A-2 1, A

r ru -Al X- -r

.11 sr iv by 1

The stationary probability vector zoQ3is given by

z of Q
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z for 1i nr-1,

[ rn~r- z0 , for r <n <K,

where

Zo~ ~ _ " 1' +  KTn:
1 1E

tr 71 inwr~ )n rn~I

The queueing model now readily leads to a quasi-birth-and-death process

on the state space E - {i > 0} X El , with generator

A00 A0.

A1 0  Al1  A1 2

Q4 =  Ac_2,0  Ac-2,1 A c-2,2

A A Ac-l,0 c-i,1 0
A2  A, A0

A 2 A

where

A0 0  3 -Q 'A

A0 1 * A Ac-2,2 0 'Al

Aio - iU 2 I , for 1 < i < C-1,

A' a Q-.A -i 2 I for 1 < i < c-i,

A2  2 c 2l ,

A1 - Q3-Al-cU2I

and A is the diagonal matrix of order K+l , whose last diagonal element
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is one and all others are zero.

The following result is then [mediate.

Theorem 3. Under the equilibrium condition

X zK< c U2

the stationary probability vector x of Q4 in partitioned form, is given

by,

(22) - for i > c

The matrix R is the unique solution in the set of non-negative matrices

of spectral radius less than one, of the equation

(23) c R2 + R (3-c 2I- A1) + 0

The vector Z = (0 -- l' '"... - is obtained as the left eigenvector

corresponding to the eigenvalue zero of an irreducible, semi-stable matrix,

similar to the matrix of Equation (21). It is normalized by the condition
c-2

X s~ -- iI-R) e 1

Only the last row of K differs from zero and is strictly positive.

The elements RO , R1, ... , in the last row of R are computed by

iterative solution of the system of equations

c 2 RKR 0 - ("+c"2) R0 +1 1i"0

ci 2 'i j + 4 1 j-l - (X+Jl+c"2) Kj + (j+l) "J R O+l"

for 1 <j j_.r-1
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cp 2 KRj + I Rj_A - (X+rl+c2) R + ru 1 Rj+ l  0

for r <j <K-i

cu 2 + R K - (N+rul) RK + X 0

The accuracy check

K
r! Rj =--JO c 2

should be satisfied.

6. Additional Variants

For each of the three preceding models, the Unit 2 may be assumed to

have its own Poisson arrival process of rate X1 . The general results on the

matrix-geometric form of the stationary probability vector x remain valid

for this case, but the major simplifications due to the particular structure

of R are lost for A1 > 0. The matrix R is then strictly positive. In

the computation of R, it is still worthwhile to write that matrix in partitioned

form, so that the highly sparse and regular structure of the coefficient

matrices may be exploited. How this may be done is obvious once the analogues

of the equations (9) are written down.

The overflow streams from the bounded M/PH/l and M/M/r queues are parti-

cular cases of the versatile Markovian point process, introduced in (10]. By

implementing the general, but much more belabored algorithm in [12], it is

possible to study the case where Unit 2 has a single server with a general

service time distribution. If one allows the service time distribution in

that unit to be of phase type, the methods of the present paper may be im-

plemented. The large matrices, which now arise, need to be handled with care

to avoid problems of storage and large computation time. A brief discussion

of this case may be found in Chapter 6 of [11].
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7. Numerical Examples

In some of the small number of papers, which give numerical results for

overflow models, it has been noted that such results may be quite astonishing

and that naive approximations to the overflow stream may lead to gross errors

[3-5]. This observation may be made generally for queues in which arrival

and service rates are subject to (random) fluctuations (8, 11]. The under-

lying cause for the highly overdispersed queue length and waiting time dis-

tributions for such models lies in the large variations, which typically occur

in the interarrival times to Unit 2. In order to illustrate this adequately,

it is necessary to consider several related numerical examples.

We consider the system consisting of an M/PH/l queue of finite capacity

K - 4, with overflow to a single exponential server. The service time dis-
38

tribution in Unit 1 was chosen to be - E2 (8,x) + - E (0.1,x). Its mean

is 0.5. Its particular form was chosen to reflect a case in which occasionally

long service times occur. The arrival rate X to the system is 20, so that

Unit 1 is saturated 90% of the time.

The service rate U in Unit 2 was chosen so as to obtain three different

cases, respectively with p - 0.92, 0.94 and 0.96. Before giving the numerical

results, that are obtained, we briefly consider an appealing, but naive

"approximation". It may be argued that the overflow stream from Unit 1 could be

"approximated" by a Poisson process of rate 0.9X. This would lead, by

elementary formulas for the M/M/l queue, the following values for the mean and

the standard deviation of the queue length in Unit 2.

mean st. dev.

0.92 11.50 11.99

0.94 15.67 16.16

0.96 24.00 24.49
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The correct computed values are however much larger.

P mean st. dev.

0.92 18.99 23.39

0.94 27.64 33.44

0.96 45.24 53.33

The reasons why the naive approximation fares so poorly are similar to those

discussed in [8]. During periods of overflow, the second unit behaves like

a mildly unstable M/M/l queue, which may recover from its build-up during

the periods when Unit 1 is not filled to capacity. During the rare long

service times in Unit 1, the latter will almost certainly become saturated

and remain so for a fairly long time. The build-ups in the second unit will

then be substantial and cause large queue lengths for a long time thereafter.

The numerical results for Unit 2 are not significantly affected by a

moderate increase in the capacity of Unit 1. A change of e.g. K - 4, to

K - 8, resulted in only a minute change in the computed characteristics of

Unit 2. The additional four waiting spaces are occupied most of the time

and do not appreciably affect the rate of overflow.

As is to be expected, the queue in Unit 2 is much smoother when the

service times in Unit 1 exhibit less random variation. This is seen by

replacing the earlier service time distribution, e.g. by E3 (3,x).

A variety of other aspects of overflow in queues may easily be numeri-

cally investigated by implementing the algorithm proposed in this paper. The

numerical results are often astonishing at first, but are seen - after some

reflection - to correspond to intuitive qualitative behavior of the queue.

They suggest that great care is needed in the interpretation of numerical

results for networks with capacity constraints.

i ..
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